IV. DETERMINANTS

Martina Bečvářová

Winter semester 2022/2023 Faculty of Transportation Sciences, CTU in Prague

Definition

If A is an $n \times n$ matrix

$$
\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix},
$$

then the determinant of A , denoted det A , is defined by

$$
\det A = \sum_{\pi \in S_n} \operatorname{sgn} \pi \cdot a_{1\pi(1)} \cdot a_{2\pi(2)} \cdot \ldots \cdot a_{n\pi(n)}.
$$

Notes for better understanding

- 1. Here π is the symbol for a permutation of the indices of matrix columns. A permutation of $(1, 2, \ldots, n)$ is an *n*-tuple (m_1, m_2, \ldots, m_n) that contains each of the numbers $1, \ldots, n$ exactly once. The set of all permutations of $(1, 2, ..., n)$ is denoted S_n . For example, if $S = \{1, 2, 3\}$, then the set S_3 consists of six permutations $(S_3 = \{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)\}).$ We know that S_n has n! elements $(n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1)$.
- 2. The symbol sgn π is called the *sign of permutation* (m_1, m_2, \ldots, m_n) . The sign of permutation π is defined to be 1 if there is an even number of pairs of integers (j, k) with $1 \leq j \leq k \leq n$ such that $m_j > m_k$ and -1 if there is an odd number of such pairs. In other words, the sign of a permutation equals −1 if the natural order has been reversed odd number times. For example the permutations $(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)$ have their signs 1, -1, -1, 1, −1 and 1.
- 3. We will denote the determinant of the matrix A by the symbol

- 4. In some texts, the determinant is defined as a function on the square matrices that is linear as a function of each row and that it changes the sign when two rows are interchanged, so that the determinant is a multilinear and alternating function on the square matrices. To prove that such a function exists and that it is unique is a non-trivial task.
- 5. Sometimes we will speak about the "rows or columns of a determinant" instead of a more precise expression "rows or columns of a matrix from which we calculate the determinant".

∗ ∗ ∗ ∗

How to calculate determinant of square matrices of "small" row ranks

1. If *A* is 1×1 matrix, $A = (a_{11})$, then det $A = a_{11}$.

2. If A is 2×2 matrix

$$
\left(\begin{matrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{matrix}\right),
$$

then

$$
\det A = a_{11}a_{22} - a_{12}a_{21}.
$$

Example

We have

$$
\begin{vmatrix} 2 & 3 \\ -1 & 5 \end{vmatrix} = 2 \cdot 5 - (-1) \cdot 3 = 10 + 3 = 13.
$$

3. If A is a 3×3 matrix

$$
\begin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix},
$$

then

$$
\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}.
$$

The above described "algorithm" is called Sarrus' rule.

Example

We have

$$
\begin{vmatrix} 2 & 3 & 0 \\ -1 & 5 & 1 \\ 0 & 2 & 1 \end{vmatrix} = 2 \cdot 5 \cdot 1 + 3 \cdot 1 \cdot 0 + (-1) \cdot 2 \cdot 0 - 0 \cdot 5 \cdot 0 - 2 \cdot 2 \cdot 1 - (-1) \cdot 3 \cdot 1 =
$$

$$
= 10 + 0 + 0 - 0 - 4 + 3 = 9.
$$

For practical caluculations, the definition of the determinants is not, in general, suitable because $n!$ grows large very rapidly as n increases. For example,

We wish to find a more effective method for our computation.

∗ ∗ ∗ ∗

General theorems

- 1. If A is a square matrix with one zero row, then $\det A = 0$.
- 2. If A is a square matrix with two equal rows, then $\det A = 0$.
- 3. Suppose that A is a square matrix. If B is the matrix obtained from A by interchanging two rows, then det $B = - \det A$.
- 4. For every a square matrix A, det $A = \det A^t$.
- 5. Suppose that A is a square matrix. If B is the matrix obtained from A by multiplying a row by a scalar λ , then det $B = \lambda \cdot \det A$.
- 6. Suppose that A is a square matrix. If B is the matrix obtained from A by multiplying it by a scalar λ , then det $B = \lambda^n \cdot \det A$.
- 7. Suppose that A is a square matrix. If B is the matrix obtained from A by adding, say, λ -times the *i*-th row to the *j*-th row then, $\det B = \det A$.
- 8. The determinant of every upper-triangualar (or lower-triangular) matrix is equal to the product of all diagonal entries, thus det $A = a_{11} \cdot a_{22} \cdot a_{33} \cdot \ldots \cdot a_{nn}$.
- 9. The determinant of every diagonal matrix is equal to the product of the diagonal entries, so that det $A = a_{11} \cdot a_{22} \cdot a_{33} \cdot \ldots \cdot a_{nn}$.

Try to prove these theorems using only the definition of the determinant of a matrix.

Theorem

If A and B are square matrices of the same size, then

$$
\det AB = \det A \cdot \det B.
$$

∗ ∗ ∗ ∗

The following result shows how we can calculate determinant of $n \times n$ matrix from determinants of $(n-1) \times (n-1)$ matrices.

Definition

Let A be a matrix of size $n \times n$. By the symbol A_{ij} we mean the matrix of size $(n-1) \times (n-1)$ obtained from the matrix A by omitting its *i*-th row and *j*-th column. The determinant of matrix A_{ij} is called the *subdeterminant* of matrix A which corresponds to the entry a_{ij} .

Theorem – Laplace expansion along the *i*-th row (along the *j*-th column)

Let A be a matrix of size $n \times n$. Then

$$
\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij},
$$

which is called the *Laplace expansion along the i-th row*. Alternatively

$$
\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij},
$$

which is called the *Laplace expansion along the j-th column*.

Note the independence on the row (column) chosen. Note also that on the left hand side, there is just determinant of matrix A of size $n \times n$, on the right hand side there is n determinants of matrices of size $(n-1) \times (n-1)$ which come from the matrix A.

Example

Calculate the determinant of a matrix A , where

$$
A = \begin{vmatrix} 1 & 1 & 3 & 4 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 4 & 0 \\ 0 & 1 & 0 & 3 \end{vmatrix}.
$$

The matrix A is of size 4×4 , so that for its calculation it is impossible to use Sarrus' algorithm. We use preferably Laplace expansion along the 1-th column because it contains many zero entries.

$$
\begin{vmatrix} 1 & 1 & 3 & 4 \ 0 & 1 & 1 & 1 \ 0 & 1 & 4 & 0 \ 0 & 1 & 0 & 3 \ \end{vmatrix} = (-1)^{1+1} \cdot 1 \cdot \begin{vmatrix} 1 & 1 & 1 \ 1 & 4 & 0 \ 1 & 0 & 3 \ \end{vmatrix} + (-1)^{2+1} \cdot 0 \cdot \begin{vmatrix} 1 & 3 & 4 \ 1 & 4 & 0 \ 1 & 0 & 3 \ \end{vmatrix} + (-1)^{3+1} \cdot 0 \cdot \begin{vmatrix} 1 & 3 & 4 \ 1 & 1 & 1 \ 1 & 0 & 3 \ \end{vmatrix} + (-1)^{4+1} \cdot 0 \cdot \begin{vmatrix} 1 & 3 & 4 \ 1 & 1 & 1 \ 1 & 0 & 3 \ \end{vmatrix} = 1 \cdot \begin{vmatrix} 1 & 1 & 1 \ 1 & 4 & 0 \ 1 & 0 & 3 \ \end{vmatrix} + 0 + 0 + 0 = \begin{vmatrix} 1 & 1 & 1 \ 1 & 4 & 0 \ 1 & 0 & 3 \ \end{vmatrix} = 12 + 0 + 0 - 4 - 0 - 3 = 5.
$$

∗ ∗ ∗ ∗

Applications of determinants

In what follows, we will offer the most important applications of determinants.

• The algorithm for calculation of an inverse matrix

Definition

Let A be a matrix of size $n \times n$. We define the *adjugate* matrix of A to be the $n \times n$ matrix adj A given by

$$
(\operatorname{adj} A)_{ij} = (-1)^{i+j} \det A_{ji}.
$$

It is very important to note the interchange of the indices in the above definition. The adjugate matrix has the following useful property.

Theorem

Let A be matrix of size $n \times n$, adj A its adjugate matrix, then

$$
A \cdot \operatorname{adj} A = (\det A) \cdot E_{n \times n}.
$$

The matrix $(\det A) \cdot E_{n \times n}$ is a diagonal matrix in which every entry on the diagonal is the scalar $(\det A)$. We can use the above result to obtain a convenient way of determinig whether or not a given matrix is invertible, and a new way of computing inverses.

Theorem

A square matrix A is invertible, if and only if det $A \neq 0$, in which case the inverse is given by

$$
A^{-1} = \frac{1}{\det A} \cdot \operatorname{adj} A.
$$

Note

The above result provides a new way how to compute inverse matices.

In particular, one should note the factor $(-1)^{i+j} = \pm 1$. The sign is given according to the scheme

+ − + − . . . − + − + . . . + − + − ... $+ - + \ldots$

Example

Let be A

$$
\begin{pmatrix} 1 & -1 & 0 \ 0 & 5 & 7 \ 3 & 2 & 1 \end{pmatrix}.
$$

Calculate A^{-1} (if exists).

$$
\det A = \begin{vmatrix} 1 & -1 & 0 \\ 0 & 5 & 7 \\ 3 & 2 & 1 \end{vmatrix} = 5 + 0 - 21 - 0 - 0 - 14 = -30 \neq 0.
$$

Now we know that the matrix A^{-1} exists. We will calculate the *adjugate* matrix of A.

$$
\det A_{11} = \begin{vmatrix} 5 & 7 \\ 2 & 1 \end{vmatrix} = -9 \quad \det A_{21} = \begin{vmatrix} -1 & 0 \\ 2 & 1 \end{vmatrix} = -1 \quad \det A_{31} = \begin{vmatrix} -1 & 0 \\ 5 & 7 \end{vmatrix} = -7
$$

$$
\det A_{12} = \begin{vmatrix} 0 & 7 \\ 3 & 1 \end{vmatrix} = -21 \quad \det A_{22} = \begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix} = 1 \qquad \det A_{32} = \begin{vmatrix} 1 & 0 \\ 0 & 7 \end{vmatrix} = 7
$$

$$
\det A_{13} = \begin{vmatrix} 0 & 5 \\ 3 & 2 \end{vmatrix} = -15 \quad \det A_{23} = \begin{vmatrix} 1 & -1 \\ 3 & 2 \end{vmatrix} = 5 \qquad \det A_{33} = \begin{vmatrix} 1 & -1 \\ 0 & 5 \end{vmatrix} = 5
$$

So adj A is

$$
adj A = \begin{pmatrix} -9 & 1 & -7 \\ 21 & 1 & -7 \\ -15 & -5 & 5 \end{pmatrix}.
$$

The inverse matrix of A is

$$
A^{-1} = -\frac{1}{30} \cdot \begin{pmatrix} -9 & 1 & -7 \\ 21 & 1 & -7 \\ -15 & -5 & 5 \end{pmatrix}.
$$

In order to calculate the inverse matrix of matrix A of size 3 we had to compute one determinant of a matrix A and 9 determinants of adjugate matrices of matrix A.

∗ ∗ ∗ ∗

• The algorithm for solving system of linear equations with a regular matrix Theorem (so called Cramer's rule)

Let be $Ax^t = b^t$ non-homogeneous system of linear equations where A is a matrix $n \times n$ of rank n (so that A is a regular matrix), $b \neq o$. Then the system has only one solution (x_1, x_2, \ldots, x_n) given by

$$
x_i = \frac{\det A_i}{\det A}, \quad i = 1, \dots, n,
$$

where A_i is a matrix which formed from the matrix A by exchanging the i-th column of matrix A by the $\text{column } b^t.$

Example

Solve the following system of linear equations

$$
x + y + z = 1,
$$

\n
$$
x - y = 2,
$$

\n
$$
x - z = 0.
$$

We will use Cramer's rule.

$$
\det A = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{vmatrix} = 3,
$$

$$
\det A_x = \begin{vmatrix} 1 & 1 & 1 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{vmatrix} = 3, \quad \det A_y = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & -1 \end{vmatrix} = -3, \quad \det A_z = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 1 & 0 & 0 \end{vmatrix} = 3.
$$

$$
x = \frac{\det A_x}{\det A} = \frac{3}{3} = 1, \quad y = \frac{\det A_y}{\det A}, = \frac{-3}{3} = -1, \quad z = \frac{\det A_z}{\det A}, = \frac{3}{3} = 1.
$$

So the solution of our system of linear equations is $[1, -1, 1]$.

∗ ∗ ∗ ∗

Some geometrical applications of vector spaces, matrices and determinants

• Dot product

To motivate the concept of inner product, let us consider vectors in \mathbb{R}^2 and \mathbb{R}^3 as arrows with initial point at the origin. The length of a vector $x \in \mathbb{R}^2$ or \mathbb{R}^3 is called the norm of x, denoted ||x||. Thus for $x = (x_1, x_2) \in \mathbb{R}^2$,

Similarly, for $x = (x_1, x_2, x_3) \in \mathbb{R}^3$,

$$
||x|| = \sqrt{x_1^2 + x_2^2 + x_3^2}.
$$

8

The generalization to \mathbb{R}^n is obvious.

Definition

We define the *norm* of a vector $x, x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, by

$$
||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.
$$

Definition

For all $x, y \in \mathbb{R}^n$ we define the *dot product* of x and y, denoted $x \cdot y$, by

$$
x \cdot y = x_1 y_1 + \dots + x_n y_n,
$$

where $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$.

Notes

- 1. Note that the *dot product* of two vectors in \mathbb{R}^n is a number, not a vector.
- 2. Obviously $x \cdot x = ||x||^2$ for all $x \in \mathbb{R}^n$.
- 3. In particular, $x \cdot x \ge 0$ for all $x \in \mathbb{R}^n$, with equality if and only if $x = 0$.
- 4. Also, if $y \in \mathbb{R}^n$ is fixed, then clearly the map from \mathbb{R}^n to \mathbb{R} sending $x \in \mathbb{R}^n$ to $x \cdot y$ is linear.
- 5. Furthermore, $x \cdot y = y \cdot x$ for all $x, y \in \mathbb{R}^n$.

∗ ∗ ∗ ∗

• Inner product

The notion of inner product is a generalization of the dot product.

Definition

An *inner product* on a vector space V is a function that maps each ordered pair (u, v) of elements of V to a number $\langle u, v \rangle \in F$ and has the following properties:

- 1. positivity: $\langle v, v \rangle \geq 0$ for all $v \in V$;
- 2. definiteness: $\langle v, v \rangle = 0$ if and only if $v = 0$;
- 3. additivity in the first variable: $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ for all $u, v, w \in V$;
- 4. homogenity in the first variable: $\langle av, w \rangle = a \langle v, w \rangle$ for all $a \in F$ and all $v, w \in V$;
- 5. conjugate transpose: $\langle v, w \rangle = \overline{\langle w, v \rangle}$ for all $v, w \in V$.

Recall that every real number equals its complex conjugate. Thus if we are dealing with a real vector space, then in the last condition we can simply state that $\langle v, w \rangle = \langle w, v \rangle$ for all $v, w \in V$.

Note

Note in for \mathbb{R}^n , the dot product is an inner product.

Definition

An *inner product space* is a vector space V equipped with an inner product on V .

Definition

Two vectors $u, v \in V$ are said to be *orthogonal*, if $\langle u, v \rangle = 0$.

Note that the order of the vectors does not matter because $\langle u, v \rangle = 0$, if and only if $\langle v, u \rangle = 0$. Instead of saying that u and v are orthogonal, sometimes we say that u is orthogonal to v . Clearly o is orthogonal to every vector. Futhermore, o is the only vector that is orthogonal to itself.

∗ ∗ ∗ ∗

• Some known theorems

Pythagorean theorem

If u, v are orthogonal vectors in V , then

$$
||u + v||2 = ||u||2 + ||v||2.
$$

Cauchy-Schwarz inequality

If u, v are vectors in V , then

$$
|\langle u, v \rangle| \le ||u|| \cdot ||v||.
$$

The equality holds if and only if one of u, v is a scalar multiple of the other.

Triangle inequality

If u, v are vectors in V , then

$$
||u + v|| \le ||u|| + ||v||.
$$

The equality holds if and only, if one of u, v is a nonnegative multiple of the other.

 $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$.

Parallelogram equality

If u, v are vectors in V , then

$$
||u + v||2 + ||u - v||2 = 2(||u||2 + ||v||2).
$$

Definition

If u, v are vectors in V, $u \neq o$ and $v \neq o$, then we define the angle φ between vectors u and v as

$$
\cos \varphi = \frac{\langle u, v \rangle}{||u|| \cdot ||v||},
$$

where $\varphi \in \langle 0, \pi \rangle$.

Definition

A set of vectors is called orthonormal if the vectors are pairwise orthogonal and each vector has norm 1. An *orthonormal basis* of V is an orthonormal set of vectors in V that is also a basis of V.

Example

.

A standard orthonormal basis of the vector space \mathbb{R}^n is

$$
B = \{(1,0,0,\ldots,0), (0,1,0,\ldots,0), (0,0,1,\ldots,0), \ldots, (0,0,0,\ldots,1)\}
$$

Gram-Schmidt theorem

If $\{v_1, v_2, \ldots, v_m\}$ is a linearly independent set of vectors in V, then there exists an orthonormal set ${e_1, \ldots, e_m}$ of vectors in V such that

$$
\mathrm{span}\, \{v_1,v_2,\ldots,v_j\} = \mathrm{span}\{e_1,\ldots,e_j\}
$$

for $j = 1, \ldots, m$.

∗ ∗ ∗ ∗

• Vector product in \mathbb{R}^3

Definition

Let $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$. By the vector product of u and v we mean the vector $w \in \mathbb{R}^3$ given by

 $u \times v = (u_1, u_2, u_3) \times (v_1, v_2, v_3) = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$

Note that the vector $u \times v$ is orthogonal to both vectors u and v.

Note that the norm of the vector $u \times v$, that is $||u \times v||$, is equal to the area of parallelogram ABCD given by vectors u and v .

∗ ∗ ∗ ∗

• Some applications of determinants in analytic geometry

Plane

1. Let $A = [x_1, y_1], B = [x_2, y_2]$ and $C = [x_3, y_3]$ be three points in the plane V. Decide whether A, B and C lie on a single straight-line.

Calculate the determinant

$$
\det A = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}.
$$

If det $A = 0$, then the points A, B and C lie on a single straight-line. If det $A \neq 0$, then the points A, B and C do not lie on any straight-line.

2. Let $A = [x_1, y_1]$ and $B = [x_2, y_2]$ be two points in the plane V. Write an analytic equation (so called general equation) of the straight-line AB.

Calculate the following determinant to obtain the analytic equation of the straight-line AB

$$
\begin{vmatrix} x_1 & y_1 & 1 \ x_2 & y_2 & 1 \ x & y & 1 \end{vmatrix} = (y_1 - y_2)x + (x_1 - x_2)y + x_1y_2 - x_2y_1 = 0.
$$

3. Let $A = [x_1, y_1], B = [x_2, y_2]$ and $C = [x_3, y_3]$ be three points in the plane V. Calculate the area of the triangle ABC.

Calculate the following determinant to obtain the area of the triangle ABC:

$$
S = \frac{1}{2} \left| \begin{array}{ccc} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{array} \right| \, .
$$

12

Note

From the secondary school we know that the area of the triangle ABC can be calculated as

$$
S = \frac{1}{2}c \cdot v_c = \frac{1}{2}b \cdot c \cdot \sin \alpha = \frac{1}{2} ||(|\overrightarrow{AB}| \times |\overrightarrow{AC}|)||.
$$

Space

1. Let $A = [x_1, y_1, z_1], B = [x_2, y_2, z_2], C = [x_3, y_3, z_3], D = [x_4, y_4, z_4]$ be four points in \mathbb{R}^3 . Decide whether A, B, C and D lie on a single plane.

Calculate the determinant

$$
\det A = \begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{vmatrix}.
$$

If det $A = 0$, then the points A, B, C and D lie on a single plane. If det $A \neq 0$, then the points A, B, C and D do not lie on any plane.

2. Let $A = [x_1, y_1, z_1], B = [x_2, y_2, z_2]$ and $C = [x_3, y_3, z_3]$ be three points in \mathbb{R}^3 (not belonging to a single straight-line). Write the analytic equation (so called general equation) of the plane ABC.

Calculate the following determinant to obtain the analytic equation of the plane ABC

$$
\det A = \begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x & y & z & 1 \end{vmatrix} = 0.
$$

3. Let $A = [x_1, y_1, z_1], B = [x_2, y_2, z_2], C = [x_3, y_3, z_3]$ and $D = [x_4, y_4, z_4]$ be four points in \mathbb{R}^3 . Calculate the volume of the tetrahedron ABCD.

Calculate the following determinant to obtain the volume of the tetrahedron ABCD

$$
V = \frac{1}{6} \begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{vmatrix}.
$$

Note

From the secondary school we know that the volume of the tetrahedron $ABCD$ can be calculated as

$$
V=\frac{1}{3}S_{ABC}\cdot v=\frac{1}{6}|(|\overrightarrow{AB}|\times|\overrightarrow{AC}|)\cdot|\overrightarrow{AD}|)|,
$$

where v is the distance of the point D from the plane ABC and S_{ABC} is the area of the triangle ABC .

Exercises

1. Calculate the following determinants

a)

a)

 $16\,$

k)
\n
$$
\begin{vmatrix}\n1 & 0 & f \\
u & 1 & k \\
0 & 1 & k\n\end{vmatrix}
$$
\n1)
\n
$$
\begin{vmatrix}\n0 & a & a \\
a & 0 & a \\
a & a & 0\n\end{vmatrix}
$$
\nm)
\n
$$
\begin{vmatrix}\na & a & a \\
-a & 0 & a \\
-a & -a & 0\n\end{vmatrix}
$$
\nn)
\n
$$
\begin{vmatrix}\na^{2} + 1 & ab & ac \\
ac & bc & c^{2} + 1 \\
ac & bc & c^{2} + 1\n\end{vmatrix}
$$
\no)
\n
$$
\begin{vmatrix}\n\sin x & \cos x & 1 \\
\sin y & \cos y & 1 \\
\sin z & \cos z & 1\n\end{vmatrix}
$$

3. Calculate the following determinants

 $a)$

18

n)

$$
\begin{vmatrix} 1 & 1 & 1 & a \\ 2 & 1 & 2 & b \\ 1 & -1 & 1 & c \\ 2 & 1 & -2 & d \end{vmatrix}.
$$

4. Solve the equations

a) x^2 3 2 $x \quad -1 \quad 1$ $0 \t 1 \t 4$ $= 0.$ b) x^2 4 9 $x \quad 2 \quad 3$ 1 1 1 $= 0.$ c) 1 $x \quad x^2$ 1 a a^2 1 $-b$ b^2 $= 0.$ d) 1 3 x 3 1 5 $x \quad 2 \quad 10$ $= 0.$

5. Find the general equation of the straight-line AB and calculate the area of the triangle ABC a) $A = [-1, 5], B = [2, -6], C = [4, 0].$ b) $A = [-1, 18], B = [1, 8], C = [2, 3].$

c) $A = [5, 0], B = [0, 2], C = [-2, -1].$

6. Find the genearal equation of the plane ABC and calculate the volume of the tetrahedron ABCD a) $A = \{3, 0, 4\}, B = \{-1, -1, 7\}, C = \{0, -2, -3\}, D = \{6, 5, 4\}.$ b) $A = \{3, 4, 5\}, B = \{-2, -3, -4\}, C = \{6, 0, 8\}, D = \{3, 2, 7\}.$